G* =  = OPERADOR QUÂNTICO DE GRACELI.


    EQUAÇÃO DE GRACELI.. PARA INTERAÇÕES DE ONDAS E INTERAÇÕES DAS FORÇAS FUNDAMENTAIS

/

G* =  = [          ] ω   / T] / c [    [x,t] ]  = 


 { -1 / G* =   / T] /  c} =

G* = = OPERADOR DE GRACELI = Em mecânica quântica, o OPERADOR DE GRACELI [ G* =]  é um operador cujo observável corresponde à  ENERGIA TOTAL DO SISTEMA , TODAS AS INTERAÇÕES INCLUINDO TODAS AS INTERAÇÕES DAS FORÇAS FUNDAMENTAIS [AS QUATRO FORÇAS] [ELETROMAGNÉTICA, FORTE, FRACA E GRAVITACIONAL], INTERAÇÕES SPINS-ÓRBITAS, ESTRUTURRA ELETRÔNICA DOS ELEMENTOS QUÍMICOS, TRANSFORMAÇÕES, SISTEMAS DE ONDAS QUÂNTICAS, MOMENTUM MAGNÉTICO de cada elemento químico e partícula, NÍVEIS DE ENERGIA , número quântico , e o  sistema GENERALIZADO GRACELI.


COMO TAMBÉM ESTÁ RELACIONADO A TODO SISTEMA CATEGORIAL GRACELI, TENSORIAL GRACELI DIMENSIONAL DE GRACELI..



    /   /    

G* =  = [          ] ω   / T] / c    [x,t] ]  = 




MODELO GRACELI TENSORIAL..



  =  c

  =  

  =    

  =   

 =  G* =  =


 =     ω 


  =   G* =   / T] /  c}


 =  [          ] ω   / T] / c [ 


 =       /   /    

G* =  = [          ] ω   / T] / c    [x,t] ]  =


 =     


 =   



 =   




 =   

Momento magnético do eletrão[editar | editar código-fonte]

O momento (dipolar) magnético de um eletrão é:

é o tensor de tensão de Maxwell e c é a velocidade da luz. Assim,  é expresso e medido em unidades de pressão do S.I. (pascal).

onde  é o tensor eletromagnético e onde  é o tensor métrico de Minkowski [en] de assinatura métrica (− + + +). Ao usar a métrica com assinatura (+ − − −), a expressão à direita do sinal de igual terá sinal oposto.



 =   

onde c, velocidade da luz, é igual a .[3]



  1. As órbitas permitidas dependem de valores quantizados (bem definidos) de momento angular orbital, L, de acordo com a equação

 =   

onde n = 1, 2, 3, ... é chamado de número quântico principal e h é a constante de Planck.[4]




Níveis energéticos dos elétrons em um átomo de hidrogênio[editar | editar código-fonte]

O modelo do átomo de Bohr explica bem o comportamento do átomo de hidrogênio e do átomo de hélio ionizado, mas é insuficiente para átomos com mais de um elétron.

Segue abaixo um desenvolvimento do modelo de Bohr que demonstra os níveis de energia no hidrogênio.

Sejam as seguintes convenções:

1. Todas as partículas são como ondas e, assim, o comprimento de onda do elétron, está relacionado à sua velocidade por

 =   

onde h é a constante de Planck e me, a massa do elétron. Bohr não tinha levantado esta hipótese porque só depois é que foi proposto o conceito associado a esta afirmação (veja dualidade onda-partícula). Porém, permite chegar na próxima afirmação.

2. A circunferência da órbita do elétron deve ser um múltiplo inteiro de seu comprimento de onda:

 =   

onde r é o raio da órbita do elétron e n, um número inteiro positivo.

3. O elétron mantém-se em órbita por forças eletrostáticas. Isto é, a força eletrostática é igual à força centrípeta:

 =   

onde =    

qe, a carga elétrica do elétron.

Temos três equações e três incógnitas: v e r. Depois de manipulações algébricas para obter v em função das outras variáveis, pode-se substituir as soluções na equação da energia total do elétron:

 =   

Pelo teorema do virial, a energia total simplifica-se para

 =   

 =  

Ou, depois de substituídos os valores das constantes:[7]

 =   

Assim, o menor nível de energia do hidrogênio (n = 1) é cerca de -13.6 eV. O próximo nível de energia (n = 2) é -3.4 eV. O terceiro (n = 3), -1.51 eV, e assim por diante. Note que estas energias são menores que zero, o que significa que o elétron está em um estado de ligação com o próton presente no núcleo. Estados de energia positiva correspondem ao átomo ionizado, no qual o elétron não está mais ligado, mas em um estado desagregado.

O modelo atômico de Bohr pode ser facilmente usado para a composição do modelo atômico de Linus Pauling. Apenas somando as camadas e as colocando na ordem de Pauling.

Frequência[editar | editar código-fonte]

A frequência orbital[5]

 =   (X)

Onde  é a velocidade angular orbital do elétron.

 =  

A partir da Equação - acima - do movimento orbital mantido pela força de Coulomb acima temos

 =  

Substituindo esta expressão na Equação (X) temos:

 =   (Z)

Para o átomo - , a qual está na região ultravioleta do espectro electromagnético.

Se o elétron irradia, a energia E irá decrescer tornando-se cada vez negativa e a partir da Equação do raio da órbita r também diminui. O decréscimo em r na Equação (Z), provoca um aumento na frequência f.

De modo que temos um efeito de pista que quando a energia é irradiada, E diminui, o raio orbital r diminui, a qual por sua vez causa um aumento da frequência orbital f e aumentando continuamente a frequência irradiada.

Este modelo planetário prevê que o electrão se mova em espiral para dentro em direção ao núcleo, emitindo um espectro contínuo. Calcula-se que este processo não dure mais do que , um tempo muito curto na verdade.

Comentários

Postagens mais visitadas deste blog